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 The U. S. Army Night Vision and Electronic Sensors Directorate (NVESD) recently 

tested an explosive-hazards detection vehicle that combines a pulsed FLGPR with a visible-

spectrum color camera. Additionally, NVESD tested a human-in-the-loop multi-camera system 

with the same goal in mind. It contains wide field-of-view color and infrared cameras as well as 

zoomable narrow field-of-view versions of those modalities. Even though they are separate 

vehicles, having information from both systems offers great potential for information fusion.  

Based on previous work at the University of Missouri, we are not only able to register the UTM-

based positions of the FLGPR to the color image sequences on the first system, but we can 

register these locations to corresponding image frames of all sensors on the human-in-the-loop 

platform.   

 This paper presents our approach to first generate libraries of multi-sensor information 

across these platforms. Subsequently, research is performed in feature extraction and recognition 

algorithms based on the multi-sensor signatures. Our goal is to tailor specific algorithms to 

recognize and eliminate different categories of clutter and to be able to identify particular 

explosive hazards. We demonstrate our library creation, feature extraction and object recognition 

results on a large data collection at a US Army test site. 

 

 

I. Introduction 

 

 Forward-looking ground penetrating radar (FLGPR) is a primary sensor used for 

landmine detection. The FLGPR can detect both above and below ground targets, but 

unfortunately it is can produce a large number of false detections. With proper registration 

FLGPR target hits can be mapped into a video image space where image-processing techniques 



can potentially filter out false positive (FP) target detections. These FPs can arise from various 

sources including bushes, cacti and even bare ground. Previous work used one monolithic model 

for all classes of FPs, but the results were less than desirable [Stone08]. In this paper we describe 

an effort to see if FP-specific models will improve FP filtering. Both model construction 

methods and results are presented. 

 

 

II. Model Description 

 

A. Model Design 

 

 This project is actually part of a larger research project in which computer algorithms 

attempt to locate instances of specific objects within a large data set of color images; or, given 

any point on a color image, to return the probability that a specific object is local within some 

radius. The process involves characterizing images of certain types of objects. More specifically, 

for multiple sets of color images (frames) in which a consistent time interval separates every 

consecutive image in a set, the objective of this project is to develop a means for collecting, 

storing, and accessing images of specific objects (sub-image) extracted from the frames (super-

images); to collect, calculate, and store information describing each sub-image; and to associate 

sets of temporally linked sub-images, which move through super-image space with respect to 

time (with respect to frame index).   

 The process involves characterizing images of certain types of objects. To aid in analysis, 

the sub-images and associated information are pre-extracted and sorted in a database. This allows 

specific sets of data to be analyzed at once while excluding other sets of data. It also reduces the 

computer processing time necessary to locate and analyze the data. 

 The database stores structured information pertaining to multiple sets of temporally 

linked sub-images. It is a collection of two object-oriented classes: Sequence and Datanode.  

Each instance of the Sequence class contains data regarding exactly one specific object over 

some range of frames. It holds information about the object's type and the data set in which it can 

be found, as well as an array of Datanodes. Each instance of the Datanode class contains data 

regarding exactly one frame of the specific object. It holds information about the file in which 

the sub-image can be found and its coordinates on the super-image. 

 The database does not directly store any image data. Image data is stored in a different 

directory within an umbrella directory. This approach allows loading the database without the 

overhead of loading hundreds of megabytes of images. This also greatly improves the efficiency 

of analyzing a partial data set and for developing new image features with which to characterize 

specific object types. 

 We developed the MATLAB application Sequence Extraction Graphic User Interface 

(SEG), which is shown in Figure 1, to conveniently collect data to populate the database. This 

application can display the sequential set of super-images from which to extract the data. The 

user can label the object as a certain type and select the positions and number of instances of 

extracted sub images. The SEG application organizes the multiple sub-images of a single object 

and stores them in a Sequence, which is then added to the database.  



 
 

Figure 1:  Example rendering of the SEG MATLAB application 

 

 The SEG was developed to help create a database of image sequences. In its current 

version, SEG requires only two files to run. SEG needs the GPS locations of the cart for a 

particular image and a lane info file. The lane info file contains identification information that is 

stored in the database along with any information that is extracted from the images. Once the 

necessary files are loaded, data for a particular object can be extracted based on mouse clicks 

from the user or a ground truth file with northing and easting coordinates.  

 By default, the ground truth file only shows object locations, but this file can also be used 

to extract a single object or the entire lane of objects. Extracting information based on the ground 

truth is an automated process and allows the user to quickly enter hundreds of sequences into the 

database with minimal trouble. SEG’s ability to label sequences and add descriptions before the 

sequence is added in the database makes it easy to sort through the database to find what you are 

looking for. 



 
 

Figure 2:  Example rendering of the RAPID MATLAB application. 

 

 To conveniently review the content of the database, we developed the MATLAB 

application Review and Processing of Image Database (RAPID). This application can display 

any super-image or sub-image of a target. The user can browse the database by data set and/or 

object type.  Sequences or individual Datanodes can be permanently removed from the database. 

The user can also make a list of interesting data and save it as a separate, auxiliary database (e.g. 

all sub-images of green bushes). The end result of the RAPID application is a refined database 

set with a common format, which can be efficiently analyzed using additional MATLAB tools. 

 Our objective here is use the above MATLAB applications to construct an FP model for 

various specific classes of FP hits rather than one monolithic model for all FP hits. These FP 

class-specific models are called eigenmodels. After scanning several video image files, it was 

determined that FPs associated with bushes and clear ground were common FP classes. 

Therefore, eigenmodels for bush FPs and clear ground FPs were constructed for this 

investigation. 

 Each hit instance appears in a sequence of typically 20 to 30 consecutive video frames. 

SEG constructs a set of statistical feature vectors for each video sequence corresponding to a hit 

instance. Each vector contains statistical information relating to a 100 x 100 set of pixels 

centered on each hit (approximately 2m down range and 1m cross-range). See Figure 3. Seven 

statistics are computed for each hit instance: (1) image intensity, (2) Laplacian of intensity, (3) 

Sobel edge feature of intensity, (4) Local standard deviation of intensity, (5) red channel, (6) 

green channel, and (7) blue channel. The following attributes are computed for each statistic: (1) 

max, (2) min, (3) mean, (4) median, (5) standard deviation, (6) skewness and (7) kurtosis. Thus, 

each vector associated with a hit instance has 49 components. 

 



 
 

 

Figure 3:  One frame of a typical video image sequence. The faint white circles indicate potential 

target hits in this video frame.  

 

 A principal component analysis (PCA) was conducted to reduce the dimensionality of the 

model. The first decision was whether to use a PCA based on data covariance or one based on 

data correlation since either one could be used. Scaling effects principal components. This means 

if one variable has a greater variance than the others, then this variable will tend to dominate the 

first principal component of the covariance matrix. However, if the variables are scaled to unit 

variance then this problem is mitigated. Using a correlation matrix is therefore preferred 

especially if all variables are considered equally important [Chat80]. 

 A covariance PCA was conducted on a bush-class FP eigenmodel and Table 1 shows the 

variance contribution of the eight largest eigenvalues ( ). Clearly the first eigenvalue contributes 

the most to the overall data variance. Looking at the first variable (image intensity) in the 

statistics vector it was apparent it did indeed have the largest variance. Nevertheless, we had no 

reason to believe this variable was any less important than any other variable. We therefore 

decided to use a covariance PCA and picked the p = 6 largest eigenvalues to construct the 

eigenmodels. 

 



  

Eigenvalues Variation 

(%) 

1 94.75 

2 3.17 

3 1.15 

4 0.42 

5 0.32 

6 0.16 

7 0.04 

8 0.02 

 

 

Table 1:  Variance contribution per eigenvalue of the covariance matrix. Eigenvalues decrease in 

magnitude as the index number increases. 

 

   

 The database had 1631 total hit instances although not all of them corresponded to actual 

targets. Only 48 actual targets were present and some of the other hits were for fiducials. 

Nevertheless, the vast majority of hits were FPs. We physically scanned the video files and chose 

hits with no discernable targets present. (Ground truth coordinates were available for all targets.) 

We randomly selected M = 10 FP hits that had bushes and another 9 hits that had clear ground. 

As mentioned above, SEG constructs a set of statistical feature vectors for the video frames 

associated with a hit instance. A median vector for each set was extracted and the set of M such 

vectors{x1, x2, … , xM} are used to construct an FP class-specific eigenmodel. The following 

steps created the bush eigenmodel: 

 

 

STEP 1: Compute the mean vector 

 

 
 

This mean vector must be saved since it will be needed during classification. 

 

 

STEP 2:  Subtract the mean 

 

 
 

STEP 3: Form the matrix  

 

 
 



and then compute the covariance matrix C = AA
T
.  

 

 

STEP 4: Perform a principal component analysis on C and keep the p  M largest eigenvalues 

( ) where 1 > 2 >  > p along with their corresponding eigenvectors e1, e2, … , ep. 

 

STEP 5: Normalize the eigenvectors so that || ej || = 1. 

 

 

STEP 6: Create the matrix 

 

 
 

VB is a matrix with normalized eigenvectors as columns ordered from left-to-right by decreasing 

magnitude of their corresponding eigenvalues. This matrix must be saved as it used during 

classification. The above process creates an bush FP eigenmodel 

 

 
 

This algorithm can be repeated as necessary to create other class-specific FP models. 

 

  

 

B. Model Testing 

 

 Testing was conducted with eigenmodels for two FP classes: a “bush” eigenmodel 

( BUSH) and a “clear ground” eigenmodel ( GND). SEG will construct a set of statistical feature 

vectors for the 1631 hit instances, but the fiducials and the hit instances used to construct the 

eigenmodels were excluded. The median vector from each of these sets was computed. Let  be 

this set of median vectors and let   be a user-selected threshold.  

 

STEP 1: Randomly choose a median vector y .   

 

STEP 2:  Compute 

 

 
 

STEP 3:  Find the mapping of  into the bush eigenmodel space 

 

 
 

STEP 4: Compute the Mahalanobis distance D between z and the origin of the bush eigenmodel 

space origin.  If D  , then classify y as a FP. Otherwise classify y as a target. 



 

 

STEP 5: If all y  not checked, go to STEP 1. Otherwise, exit. 

 

Repeat the above steps to compute the Mahalanobis distance for the clear ground eigenmodel 

GND. If the Mahalanobis distance D  , then classify y as a FP. Otherwise classify y as a target. 

 

 

III. Results 

 

 Table 2 shows the percent correct classifications of the 1631 total hit instances in the 

database. (There are 1420 FPs after excluding the fiducials, the targets and the hit instances used 

for eigenmodel construction).  

 

 

 Bush 

Eigenmodel 

Clear Ground 

Eigenmodel 

Combined 

Eigenmodel 

   = 6   = 8   = 6   = 8   = 6   = 8 

Targets 77.1% 47.9% 79.2% 77.1%   

FPs 21.9% 35.9% 34.8% 44.1%   

 

Table 2: Detection accuracy for targets and FPs at two different threshold levels. 

 

 The thresholds value ( ) was chosen to be above the average Mahalanobis distance (from 

the origin) of the hit instances used to construct the eigenmodels. Targets are correctly detected if 

their Mahalanobis distance from the eigenmodel origin is larger the threshold whereas FPs are 

correctly detected if their distance is less than the threshold. This explains why the target (FP) 

detection accuracy decreases (increases) as the threshold increases. It is worth noting the FP 

accuracy reflects the ability to detect any FP and not just class-specific FPs. 

 The moderately low FP detection accuracy is not surprising since we constructed 

eigenmodels for only two FP classes. No analysis was done to see what percent of the 1410 FPs 

were bush class or clear ground class. Additional FP classes do exist. For example, we noticed 

some hits were near the road berm where the ground is cluttered. Other FPs were mixed, 

containing a variety of diverse objects. However, there were an insufficient number of these FPs 

to reliably construct an eigenmodel. One reason why all of the bush FPs might not be correctly 

detected is we noticed sometimes a large bush would not necessarily generate a hit throughout 

the sequence of video frames while in other cases it would.  

 The majority of the targets were detected. One reason why all of them could not be 

detected is some targets were apparently buried in the road. (Ground truth coordinates were 

available for all of the targets so their locations were precisely known.) The road surface was 

smoothly graded and therefore lacked any visible features; some target hits appeared no different 

than some clear ground hits.  

 

 

IV. Future Work 

 



 The FP detection accuracy shown in Table 2 is quite reasonable since it reflects the 

ability of one particular FP class-specific eigenmodel to detect any FP class. We did not 

investigate how well a conjunction of FP class-specific models would behave, but we conjecture 

the detection accuracy would be relatively high. Another area of investigation is whether a 

judicious choice of hit instances for specific type of FPs would lead to higher quality 

eigenmodels.  
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